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Abstract

The greatest root statistic arises as the test statistic in several multivariate analysis settings.
Suppose there is a global null hypothesis H0 that consists of m different independent sub null
hypotheses, i.e., H0 = ∩mk=1H0k and suppose the greatest root statistic is used as the test statis-
tic for each sub null hypothesis. Such problems may arise when conducting a batch MANOVA
or several batches of pairwise testing for equality of covariance matrices. Using the union-
intersection testing approach and by letting the problem dimension p→∞ faster than m→∞
we show that H0 can be tested using a Gumbel distribution to the approximate the critical
values. Although the theoretical results are asymptotic, simulation studies indicate that the
approximations are very good even for small to moderate dimensions. The results are general
and can be applied in any setting where the greatest root statistic is used, not just for the two
methods we use for illustrative purposes.

AMS 2010 subject classifications: 60G70, 62E20, 62H15.
Key words and phrases: Characteristic root, equality of covariance matrices, greatest root statis-
tic, Gumbel distribution, MANOVA, multiple testing, Tracy-Widom laws, union-intersection
test

1. Introduction

Assuming the data generating process is multivariate Gaussian, the test statistics for hypotheses
testing using the union-intersection approach arising in several multivariate analysis techniques
is the largest eigenvalue of the multivariate beta distribution. More formally, suppose X is an
n1 × p data matrix with each row being an independent copy of Np(0,Σ) then A = XTX ∼
Wp(Σ, n1) has a p dimensional Wishart distribution with n1 degrees of freedom. Let B ∼
Wp(Σ, n2) be another Wishart distribution with n2 degrees of freedom independent of A with
the same scale matrix Σ. If n1 > p then A−1 exists and the non-zero eigenvalues of the matrix
A−1B generalize the univariate F statistic. The scale matrix has no effect on the distribution
of these eigenvalues and so without loss of generality we can set Σ = Ip. The distribution of
the random matrix (A + B)−1B is a generalization of the univariate beta distribution and is

1Research was partially supported by NSF grant CCF-0808864.
2Research was partially supported by grants NSF DMS-1208488 and NIH U19 AI111143. Corresponding

author.

Preprint submitted to Elsevier October 8, 2018

ar
X

iv
:1

51
0.

08
87

3v
1 

 [
m

at
h.

ST
] 

 2
9 

O
ct

 2
01

5



called the multivariate beta distribution or the Jacobi ensemble. The largest eigenvalue θp (also
denoted by θ(p, n1, n2)) of (A + B)−1B is a random variable called the greatest root statistic
and since A is positive definite 0 < θp < 1. We can also obtain θp as the largest root of the
determinantal equation

det[B − θ(A+B)] = 0.

The greatest root statistic arises as the null hypothesis distribution for the union-intersection
test for several classical techniques such as MANOVA, test for equality of covariance matrices,
canonical correlations and so on (see Muirhead (1982)).

We consider the following problem. Suppose there is a global null hypothesis H0 that consists
of m different independent sub null hypotheses, i.e., H0 = ∩mk=1H0k. Such hypotheses arise
when one is integrating data sets or assess effects across various treatment levels. Consider a
union-intersection type testing approach where the global null hypothesis is true if and only if
each of the component sub null hypothesis is true. In such a setting the global null hypothesis
would be rejected if the maximum of the test statistics arising from each sub null hypothesis
falls in the appropriate rejection region. In particular, suppose the test statistic from each
sub null hypothesis is the greatest root statistic, i.e., θp,1, θp,2, . . . , θp,m where θp,k for each
k = 1, 2, . . . ,m is the greatest root statistic from the kth component sub null hypothesis. Then
the decision rule to reject the global null hypothesis H0 is, if the max{θp,1, θp,2, . . . , θp,m} > c
for some appropriately chosen constant c. We show that the maximum of an i.i.d. sequence of
the greatest root statistic falls in the Gumbel domain of attraction as m → ∞ and hence the
Gumbel distribution can be used to construct a test statistic to do inference for the global null
hypothesis. Our approximation relies on two levels of asymptotics. The matrix dimension of
each component multivariate beta distribution goes to infinity and also the number of sub null
hypotheses under consideration goes to infinity but we let the matrix dimension go to infinity
faster than the number of sub null hypotheses under consideration. In other words p → ∞
faster than m→∞ in the sense to be precise made in Section 3.

Dumitriu and Koev (2008) review the fact that the exact null distribution of the greatest
root statistic θ(p, n1, n2) is notoriously difficult to calculate. Deriving the exact distribution of
the largest eigenvalue relies on performing a complicated p − 1 dimensional integral with the
Vandermonde term in the integrand. Constantine (1963) showed that the marginal distribution
of the largest eigenvalue can be expressed in terms of a hypergeometric function with a matrix
argument. The cumulative distribution function of the greatest root statistic is

P (θp,1 < x) = C1,px
pn1
2 2F1

(n1
2
,
−n2 + p+ 1

2
;
n1 + p+ 1

2
;xI
)
, (1.1)

where

C1,p =
Γ
(1)
p

(
n1+n2

2

)
Γ
(1)
p

(
p+1
2

)
Γ
(1)
p

(
n1+p+1

2

)
Γ
(1)
p

(
n2
2

)
and 2F1(·, ·; ·, xI) denotes the hypergeometric function with a matrix argument, which in this
case is considered to be the identity matrix. Gupta and Richards (1985) gave exact Pfaf-
fian expressions for hypergeometric functions with a matrix argument when the arguments are
multiples of the identity matrix and also showed that the c.d.f. of the greatest root statistic
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can be expressed as a Pfaffian of a skew symmetric matrix whose entries are double integrals.
Koev and Edelman (2006) exploit the recursion relations of Jack functions to develop efficient
MATLAB implementations to evaluate the hypergeometric functions with a matrix argument.
More recently Butler and Paige (2011) provide computational implementations of the theo-
retical framework advanced by Gupta and Richards (1985). Butler and Paige (2011) express
the double integrals of the Pfaffian in terms of series expansions that are computed using the
Maple software. There is an extensive literature on the algorithmic and computational aspects
of dealing with the hypergeometric functions with a matrix argument. An elegant treatment
on the topic can be found in Dumitriu and Koev (2008) and the references therein.

Moving away from the issue of computational techniques to evaluate the hypergeometric func-
tion with a matrix argument, in the remarkable paper of Johnstone (2008), it was shown that
the greatest root statistic with suitable centering and scaling converges to the now ubiquitous
Tracy-Widom distribution Tracy and Widom (1994), Tracy and Widom (1996). In particular,
Johnstone (2008) showed that assuming p is even and that p, n1(p) and n2(p)→∞ together in
such a way that

lim
p→∞

min(p, n2)

n1 + n2
> 0, lim

p→∞

p

n1
< 1.

Then the logit transform Tp = logit(θp) = log(θp/1−θp) is approximately distributed according
to the Tracy-Widom law, i.e.,

Tp − µp
σp

⇒ F1 (1.2)

where F1 is the cdf of the Tracy-Widom distribution arising as a limiting distribution of the
largest eigenvalue of Gaussian orthogonal ensembles and µp and σp are centering and scaling
factors to make the asymptotics work. We focus on the asymptotics as opposed to exact eval-
uation of the greatest root statistic owing to the second order rate of convergence O(p−2/3)
of the greatest root statistic to the Tracy-Widom law. As Johnstone and Ma (2012) show,
this convergence rate can be guaranteed for appropriate centering and scaling factors and as
illustrated by Johnstone (2009) the Tracy-Widom approximation is fairly sharp even for small
values of p and works quite well for many applied data analysis questions.

The results are applicable in several multivariate analysis settings where the greatest root
statistic plays a role. In particular consider the following hypothesis testing framework to
conduct pairwise testing of equality of covariance matrices arising from a multivariate normal
sample. Let

H01 : Σ11 = Σ12, H02 : Σ21 = Σ22, . . . , H0m : Σm1 = Σm2.

Define the global hypothesis H0 as H0 =
⋂m
k=1H0k. Let nk1, nk2 denote the sample sizes for

the kth hypothesis test for k = 1, 2, . . . ,m and let Sk1, Sk2 denote the covariance estimators for
the kth hypothesis test. Assuming that the underlying data generating process for each of the
m situations is a multivariate normal sample then under H0k, Sk1 ∼ Wp(Σk, nk1) and Sk2 ∼
Wp(Σk, nk2) independent of Sk1 where Σk is the common covariance matrix under H0k. Thus
the test statistic for H0k is θp,k, which is the largest eigenvalue of (nk1Sk1 + nk2Sk2)

−1nk2Sk2.
Then max{θp,1, θp,2, . . . , θp,m} can be used to testH0. We will discuss this covariance testing
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problem in more detail in Section 3.1.

Our work is motivated to understand the bridge between two asymptotic regimes of extremes.
From classical extreme value theory we know that the maximum of an i.i.d. sequence of random
variables converges to one of three distributions depending on whether the random variables
are light-tailed, heavy-tailed or have a finite support. For light-tailed random variables it is
well known that the maximal domain of attraction is the Gumbel distribution and the Tracy-
Widom distribution appears as the limiting distribution of random matrices with light-tailed
i.i.d. entries. This prompts us to study the asymptotic maximal behaviour of i.i.d. extremal
eigenvalues arising from a sequence of random matrices having light-tailed entries.

2. Tracy Widom Distribution

An important question of theoretical and practical interest is understanding the behavior of the
largest eigenvalue of various classes of random matrices. If we consider a diagonal matrix with
Gaussian entries then the largest eigenvalue of such a matrix would converge to the Gumbel
distribution as the matrix dimension goes to infinity. This is because the maximal domain of
attraction of the Gaussian distribution is the Gumbel distribution. However, when we consider
a symmetric matrix with each entry being a real valued Gaussian random variable or a sym-
metric Hermitian random matrix with each entry being a complex valued Gaussian random
variable then the largest eigenvalue converges to the Tracy-Widom distribution. It is indeed a
remarkable fact that this distribution arises as the limiting distribution of a large class of ran-
dom matrices and in fact the limit distribution of the largest eigenvalue has the Tracy-Widom
law even if the assumption of i.i.d. Gaussian entries of the random matrix are relaxed, see for
example Soshnikov (2002). However, as shown in Soshnikov (2006) when the matrix entries
are heavy-tailed, then the the joint distribution of the edge eigenvalues converge weakly to the
inhomogeneous Poisson random point process.

Let F1 denote the cumulative distribution function (cdf) of the Tracy-Widom distribution
arising from the Gaussian orthogonal ensemble (GOE) and let F2 be the cdf of the Tracy-
Widom distribution arising from the Gaussian unitary ensemble (GUE) then from Tracy and
Widom (1994, 1996) we know that

F2(x) = exp

− ∞∫
x

(y − x)q2(y)dy

 (2.1)

and

F1(x) = (F2(x))
1
2 exp

−1

2

∞∫
x

q(y)dy

 , (2.2)

where q(x) is the solution of the classical Painlevé non-linear second order differential equation

q′′(x) = xq(x) + 2q3(x), q(x) ∼ Ai(x) as x→∞ (2.3)

and Ai(x) denotes the Airy function. Johnstone (2001, 2008) demonstrated a universality
property by showing that the largest eigenvalues of the Wishart matrix and the multivariate
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beta matrix both converge to the Tracy-Widom distribution, subject to some growth conditions
on the size of the design matrix. Narayanan and Wells (2013) showed that the standardized
maximum of an i.i.d. sequence of random variables having the Tracy-Widom distribution arising
from the Gaussian unitary ensembles as in (2.1) belongs to the Gumbel domain of attraction.

(a) QQ Plot of Max TW with Gumbel (b) Histogram of Max TW with Gumbel

Figure 1 – Simulated maximums of TW with Gumbel

If we take an i.i.d. sequence of random variables having the Tracy-Widom (TW) distribution
arising from the Gaussian orthogonal ensemble, as in, (2.2) then the maximum of such a se-
quence asymptotically converges to the Gumbel distribution. (The authors discovered a crucial
typo in one of the references while proving this result). Figure 1 a shows a QQ plot of simu-
lated maximums of TW random variables and the standard Gumbel distribution based on 10000
samples and Figure 1 b depicts a histogram of simulated maximums of TW random variables
overlaid with a standard Gumbel distribution. A Kolmogorov-Smirnov test to check equality
of normalized maximum of i.i.d. Tracy-Widom random variables with the Gumbel distribution
fails to reject the null hypothesis at a p-value of 0.4658.

3. Main Result

For every p ≥ 1 let θ1,1(p, n1, n2), . . . , θm,1(p, n1, n2) denote an i.i.d. sequence of largest eigen-
values obtained from an i.i.d. sequence of multivariate beta random matrices Ap,1, . . . , Ap,m and

n1 ≥ p. The meanings of n1 and n2 are as described in Section 1. Let Wp,k = logit
(
θk,1(Ap,k)

)
be their respective logit transformed largest eigenvalues. Denote by F1 the cumulative distri-
bution function of the Tracy-Widom distribution for the real case as in (2.2), and define the
following normalization constants:

bm = F−11

(
1− 1

m

)
, am = 1/(mF ′1(bm)). (3.1)

Then from Johnstone (2008) we know that

Tp,k − µp,n1p,n2p

σp,n1p,n2p

⇒ Z1 ∼ F1, (3.2)
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where

µp,n1p,n2p = 2 log tan

(
φp,n1p,n2p

2
+
γp,n1p,n2p

2

)
,

σ3p,n1p,n2p
=

16/(n1p + n2p − 1)2

sin2(φp,n1p,n2p + γp,n1p,n2p) sinφp,n1p,n2p sin γp,n1p,n2p

and

φp,n1p,n2p = 2 arcsin

(
1√
2

√
2 max(p, n1p)− 1

n1p + n2p − 1

)
, γp,n1p,n2p = 2 arcsin

(
1√
2

√
2 min(p, n1p)− 1

n1p + n2p − 1

)
.

Theorem 1. Let p, n1p, n2p,mp → ∞, with n1p ≥ p, limp→∞min(p, n1p)/(n1p + n2p) > 0 and
limp→∞mp/p

2/3 < ∞. Let Xp
k denote the centred and scaled value obtained from the logit

transform of the greatest root statistic,

Xp
k =

Tp,k − µp,n1p,n2p

σp,n1p,n2p

.

Then

Y p =

max
1≤k≤mp

Xp
k − bmp

amp

D−−−→
p→∞

Gumbel(0, 1).

Before proving the main result, we present a few lemmas. Lemma 1 is the analogue of Theorem
1 of Narayanan and Wells (2013).

Lemma 1. Let Z1, Z2, . . . be a sequence of i.i.d. random variables having the Tracy-Widom
distribution arising from a Gaussian orthogonal ensemble (GOE) with cumulative distribution
function F1 as given in (2.2). Let x∗ = sup{x ∈ R|F1(x) < 1} denote the right end point of F1.
Here x∗ =∞. Then for mp →∞ as p→∞, we have

max
1≤k≤mp

Zk − bmp

amp

D−−−→
p→∞

Gumbel(0, 1).

Proof. We utilize Von Mises’ condition to show the validity of our claim (the reader can refer
to de Haan and Ferreira (2006) or Resnick (2008) for further details). Namely, if

L(x) = lim
x→x∗

(1− F1(x))F ′′1 (x)

F ′1(x)2
= −1, (3.3)

then F1 is in the domain of attraction of the Gumbel distribution. As a reminder, here x∗ =∞.
To simplify calculations, we obtain the following from Tracy and Widom (2008)

E(x) = exp

(
−1

2

∫ ∞
x

q(s)ds

)
, F (x) = exp

(
−1

2

∫ ∞
x

(s− x)q2(s)ds

)
.

Observe that F1(x) = F (x)E(x) and F2(x) = F 2(x) and it can be easily seen that

E′(x) =
E(x)

2
q(x), F ′(x) =

F (x)

2

∫ ∞
x

q2(s)ds.
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Therefore F ′1(x) = F1(x)R1(x) where R1(x) = 1
2

[
q(x) +

∫∞
x q2(s)ds

]
.

L(x) =

[
1− F1(x)

]
F ′′1 (x)

F ′1(x)2
=

1− F1(x)

F1(x)
+

1− F1(x)

F1(x)

R′1(x)

R2
1(x)

.

We are interested in finding lim
x→∞

L(x). From section 1.1.1 of Tracy and Widom (2008) it follows

that

F1(x) = 1−

[
e−

2
3
x3/2

4
√
πx3/4

+
e−

4
3
x3/2

32πx3/2
− e−2x

3/2

128π3/2x9/4

](
1+O(x−

3
2 )

)
.

There is a typographical error in Tracy and Widom (2008) in their expression for this expansion,
there should be x3/4 in the denominator. If we take this in account, we can write

1− F1(x) ∼ e−
2
3
x3/2

4
√
πx3/4

, (3.4)

From Bassom et al. (1998) and lemma 3 of Narayanan and Wells (2013) we get,

1

2

[
q(x) +

∫ ∞
x

q2(s)ds

]
=

e−
2
3
x3/2

4
√
πx1/4

(
1+O(x−

3
2 )

)
+
e−

4
3
x3/2

16πx

(
1+O(x−

3
2 )

)
which yields the following asymptotic expression for R1(x):

R1(x) ∼ e−
2
3
x3/2

4
√
πx1/4

. (3.5)

Again using the asymptotic expansion from Bassom et al. (1998) we get

1

2

[
q′(x)− q2(x)

]
= −x

1/4e−
2
3
x3/2

4
√
π

(
1+O(x−

3
2 )

)
− e−

4
3
x3/2

8πx1/2

(
1+O(x−

3
2 )

)
.

This yields

R′1(x) ∼ −x
1/4e−

2
3
x3/2

4
√
π

. (3.6)

Since F1(x) is a cdf, F1(x) ∼ 1 as x→∞, so

1− F1(x)

F1(x)

R′1(x)

R2
1(x)

∼ −1

as x → ∞. Thus lim
x→∞

L(x) = −1 which establishes that the maximum of an i.i.d. sequence of

Tracy-Widom distribution from GOE is in the Gumbel domain of attraction

FGumbel(0,1)(x) = exp(−e−x).

Therefore, for the normalizing constants we defined, we have

max
1≤k≤mp

Zk − bmp

amp

D−−−→
p→∞

Gumbel(0, 1)

as desired.
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Lemma 2. We have

am ∼
[

4

3

] 1
2
[

3

4

] 1
6

log−1/3
(
m2

12π

)
, bm ∼

[
3

4

] 2
3

log2/3
(
m2

12π

)
.

as m→∞. Then for m→∞ and fixed y ∈ R one has lim
m→∞

am = 0 and lim
m→∞

bm =∞.

Proof. As stated earlier bm = U(m) where U(m) is the left continuous inverse of 1/(1 − F1).
Thus using (3.4) we can write

m =
1

1− F1(bm)
∼ h(bm) = 4

√
πb3/4m exp

(
2

3
b3/2m

)
.

Let g(x) = log h(ex) = log(4
√
π) + 3

4x+ 2
3 exp

(
3
2x
)
. For any y ∈ R,∣∣∣∣dg−1(y)

dy

∣∣∣∣ =

∣∣∣∣ 1

g′(g−1(y))

∣∣∣∣ =
1

3
4 + exp

(
3
2g
−1(y)

) ≤ 4

3
.

Then, by the mean value theorem∣∣log h−1(m)− log bm
∣∣ =

∣∣g−1(logm)− g−1 ◦ g(log bm)
∣∣

=
∣∣g−1(logm)− g−1 (log h(bm))

∣∣
≤ 4

3
|log(m)− log h(bm)| x→∞−−−→ 0.

Therefore

bm ∼ h−1(m) =

[
3

4
W

(
m2

12π

)]2/3
∼
[

3

4
log

(
m2

12π

)]2/3
,

where W is the Lambert W function. Second, defining dm = exp(b
3/2
m ), we also have

m =
1

1− F1(log2/3 dm)
∼ h̃(dm) = 4

√
π log1/2(dm)d2/3m .

Now for g̃(x) = log h̃(ex) = log(4
√
π)+ 1

2 log x+ 2
3x, which is invertible as a function [0,∞)→ R,∣∣∣∣dg−1(y)

dy

∣∣∣∣ =

∣∣∣∣ 1

g′(g−1(y))

∣∣∣∣ =
1

1
2g−1(y)

+ 2
3

≤ 3

2

for any y ∈ R. Then, by the mean value theorem∣∣∣log h̃−1(m)− log dm

∣∣∣ =
∣∣g−1(logm)− g−1 ◦ g(log dm)

∣∣
=
∣∣∣g−1(logm)− g−1

(
log h̃(dm)

)∣∣∣
≤ 3

2

∣∣∣log(m)− log h̃(dm)
∣∣∣ m→∞−−−−→ 0.

So

exp(b3/2m ) = dm ∼ h̃−1(m) = exp

(
3

4
W

(
m2

12π

))
∼
[

m2/12π

log(m2/12π)

]3/4
.
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Therefore,

am =
1

mF ′1(bm)
=

1

mF1(bm)R1(bm)
∼

4
√
πb

1/4
m exp

(
2
3b

3/2
m

)
m

∼
4
√
π
[
3
4 log

(
m2

12π

)]1/6 [
m2/12π

log(m2/12π)

]1/2
m

∼
[
4
3

]1/2 [3
4

]1/6
log1/3(m2/12π)

,

as desired.

We now prove Theorem 1.

Proof. We use (Johnstone, 2008, Theorem 1). The conditions required are that

lim
p→∞

min(p, n1p)

n1p + n2p
> 0, lim

p→∞

p

n2p
< 1,

which are satisfied by the assumptions of the theorem. Then µp,n1p,n2p and σn,p are defined as
in Equation (5) on p. 2641, and so, under the null hypothesis, by (Johnstone, 2008, Theorem
1) with s0 = 0 there must be a C > 0 such that∣∣∣P[Xp

k ≤ x
]
− P[Zk ≤ x]

∣∣∣ ≤ C

p2/3
e−x/2

for all x ≥ 0. Second, for any fixed y ∈ R, limp→∞ ampy + bmp = ∞ by Lemma 2, so there is
some P (y) > 0 such that for all p ≥ P (y), ampy + bmp > 0. Then, for Z1, Z2, ... a sequence of
independent real Tracy-Widom random variables, we have for all p ≥ P (y)∣∣∣P[Y p ≤ y]− exp

(
−e−y

) ∣∣∣
≤
∣∣∣∣P[ max

1≤k≤mp

Xp
k ≤ ampy + bmp

]
− P

[
max

1≤k≤mp

Zk ≤ ampy + bmp

]∣∣∣∣
+

∣∣∣∣P[ max
1≤k≤mp

Zk ≤ ampy + bmp

]
− exp

(
−e−y

)∣∣∣∣
≤

mp∑
k=1

∣∣∣∣∣
k−1∏
l=1

P
[
Zl ≤ ampy + bmp

] mp∏
l=k

P
[
Xp
l ≤ ampy + bmp

]
−

k∏
l=1

P
[
Zl ≤ ampy + bmp

] mp∏
l=k+1

P
[
Xp
l ≤ ampy + bmp

]∣∣∣∣∣
+

∣∣∣∣P[ max
1≤k≤mp

Zk ≤ ampy + bmp

]
− exp

(
−e−y

)∣∣∣∣
≤ mp

∣∣∣P[Xp
1 ≤ ampy + bmp

]
− P

[
Z1 ≤ ampy + bmp

] ∣∣∣
+

∣∣∣∣P[ max
1≤k≤mp

Zk ≤ ampy + bmp

]
− exp

(
−e−y

)∣∣∣∣
≤ C mp

p2/3
e−

1
2
(ampy+bmp ) +

∣∣∣∣P[ max
1≤k≤mp

Zk ≤ ampy + bmp

]
− exp

(
−e−y

)∣∣∣∣ .
9



Thus since limp→∞mp/p
2/3 <∞ and limp→∞ ampy + bmp =∞, using lemma 1 we get

lim
p→∞

∣∣∣P[Y p ≤ y]− exp
(
−e−y

) ∣∣∣
≤ lim

p→∞

∣∣∣∣P[ max
1≤k≤mp

Zk ≤ ampy + bmp

]
− exp

(
−e−y

)∣∣∣∣
≤ 0.

Since this is true for any y ∈ R, the result follows.

3.1. Approximate α level test

As a motivating example from multivariate analysis, consider the following hypothesis test-
ing framework to conduct pairwise testing of equality of covariance matrices arising from a
multivariate normal sample. Let

H01 : Σ11 = Σ12, H02 : Σ21 = Σ22, . . . , H0m : Σm1 = Σm2.

Define the global hypothesis H0 as H0 =
⋂m
k=1H0k. This implies that H0 is true if and only

if each of the component hypothesis H0k is true. Thus, we accept H0 if and only if every
component hypothesis H0k is accepted. We can equivalently say that we reject H0 if any
component hypothesis H0k is rejected.

Let Rk denote the rejection region corresponding to the kth hypothesis test, so that R =⋃m
k=1Rk is the rejection region corresponding to H0. Let nk1, nk2 and Sk1, Sk2 denote the

sample sizes and covariance estimators, respectively, for the kth hypothesis test, where k =
1, 2, . . . ,m. By construction, Sk1 and Sk2 will be independent. If we further assume that
each of the m samples follow a multivariate normal distribution, then under H0k we would
have Sk1 ∼ Wp(Σk, nk1) and Sk2 ∼ Wp(Σk, nk2), where Σk is the common covariance matrix
under H0k. Thus the test statistic for H0k is θp,k, which is the largest eigenvalue of (nk1Sk1 +
nk2Sk2)

−1nk2Sk2. Then max{θp,1, θp,2, . . . , θp,m} ⇒ Gp as m→∞ where Gp denotes the cdf of
a univariate Gumbel distribution, where we explicitly write the dependence on the dimension
p.

Using this, we can construct an approximate, high-dimensional α-level test for H0 : Σ1k =
Σ2k, ∀k = 1, ...,m using the union-intersection approach. Indeed, we could reject H0 when
max{θp,1, θp,2, . . . , θp,m} > cα, where

cα =

[
1 + exp

(
σp,n1p,n2pamp log

(
− log[1− α]

)
− σp,n1p,n2pbmp − µp,n1p,n2p

)]−1
.

This would an approximate α-level test in the sense that for pn/n → (0,∞) and mp/p
2/3 →

(0,∞),

lim
p→∞

P[Reject H0 |H0] = α.
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To see this, note that in the notation of Theorem 1,

P[Reject H0 |H0] = P

[
max

1≤k≤mp

θp,1 > cα

∣∣∣∣H0

]

= P

 max
1≤k≤mp

logit θp,1
(
[nk1Sk1 + nk2Sk2]

−1Sk2
)
− µp,n1p,n2p

σp,n1p,n2p

>
logit cα − µp,n1p,n2p

σp,n1p,n2p

∣∣∣∣H0


= P

[
max

1≤k≤mp

Xp
k >

logit cα − µp,n1p,n2p

σp,n1p,n2p

∣∣∣∣H0

]
= P

[
Y p >

logit cα − µp,n1p,n2p − σp,n1p,n2pbmp

σp,n1p,n2pamp

∣∣∣∣H0

]
,

so according to this same theorem it would hold that

lim
p→∞

P[Reject H0 |H0] = 1− exp

(
− exp

(
−

logit cα − µp,n1p,n2p − σp,n1p,n2pbmp

σp,n1p,n2pamp

))
= α,

as wanted.

4. Simulation

To explore the finite (m,n, p) behavior of our theoretical domain of attraction results we
carry out two numerical studies in this section. We consider two different large-scale inferential
problems: pairwise testing for equality of covariance matrices and multivariate analysis of
variance. In each simulation setting, we compute the power curves for different dimensions over
one-dimensional spaces of alternatives.

4.1. Equality of Covariance Matrices

The theory behind this test was discussed in Subsection 3.1. We have m independent
population pairs. For the kth population pair (k = 1, 2, . . . ,m), let k1 be the index of the first
population in the kth pair and k2 be the index of the second population in the kth pair. Let nk1
and nk2 be the sample sizes of the first and the second population in the kth pair. Let Σk1,Σk2

be the corresponding covariance matrices for the kth pair.
We simulated two independent p dimensional multivariate normal data sets that form the

two design matrices of dimensions nk1 × p and nk2 × p respectively. The test statistic to test
the kth null hypothesis is the largest eigenvalue θp,k of (nk1Sk1 + nk2Sk2)

−1nk2Sk2 where Sk1
and Sk2 are the sample covariance matrix analogues of Σk1 and Σk2 respectively.

We considered two different regimes for generating covariance matrix pairs that need to be
tested for equality. In the first regime, for each k = 1, . . . ,m we set Σk1 = Ip and Σk2 = γIp,
where Ip denotes the p dimensional identity matrix and γ ∈ [1, 2.5] is a non-negative scalar
giving rise to a one parameter family of alternatives. We then performed 8000 simulations to

11



test for simultaneous equality of m = 500 covariance matrix pairs for each value of γ in the
grid. We repeated the exercise for matrix dimensions ranging from p = 10 to 100, while the
sample sizes for each pair were chosen as n1 = n2 = p/2. We then computed the resulting ap-
proximations to the true power curves. The results for p = 10, 30, 70, 100 are plotted on Figure 2.
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Figure 2 – Power curves for simultaneous covariance equality tests

Note that when γ = 1, both the null and the alternative hypothesis represent the identity
matrix. As can be seen from Figure 2, our approximation does very well in detecting departures
from the null hypothesis even for very small values of p and γ. The power curve approaches 1
very quickly and gets much sharper even for a moderate values of p and mild increase of γ from
1 . This supplements the theoretical asymptotic results rather well.

4.2. MANOVA

Our second set-up involved m independent batches. Within each batch, we had r different
groups each of which contained n i.i.d. samples from a p-dimensional normal distribution. Be-
tween groups of the same batch, we had equal covariances but potentially unequal means.

Y111, · · · , Y11n ∼ Np(µ11,Σ1), Ym11, · · · , Ym1n ∼ Np(µ1r,Σm),
· · · · · · · · ·

Y1r1, · · · , Y1rn ∼ Np(µ11,Σ1),︸ ︷︷ ︸ Ymr1, · · · , Ymrn ∼ Np(µ1r,Σm).︸ ︷︷ ︸
Batch 1 Batch m

We wanted to test the global null hypothesis of equality of group means across independent
batches,

H0:
µ11 = · · · = µ1r,

· · ·
µm1 = · · · = µmr.
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It is to be emphasized that each row in the above null hypothesis expression is a p dimensional
vector. For each batch 1 ≤ k ≤ m, we computed the matrices

Ak =
r∑
l=1

n∑
i=1

(Ykli − Ȳkl)(Ykli − Ȳkl)′, Bk = n
r∑
l=1

(Ȳkl − Ȳk)(Ȳkl − Ȳk)′,

where

Ȳkl =
1

n

n∑
i=1

Ykli, Ȳk =
1

r

p∑
l=1

Ȳkl.

That is, for the kth batch, Ak was the within group covariance matrix and Bk was the between
group covariance matrix. Under the null hypothesis, we had Ak ∼Wp(r(n−1),Σk) independent
of Bk ∼Wp(r − 1,Σk) so that

θ1 = λ1([A1 +B1]
−1B1) ∼ θ1,1(p, r(n− 1), r − 1

)
· · ·

θm = λ1([Am +Bm]−1Bm) ∼ θm,1(p, r(n− 1), r − 1
)

where p refers to the dimension, r(n− 1) refers to the “error” degrees of freedom and r − 1 is
the “hypothesis” degrees of freedom for each batch. Furthermore, θ1, . . . , θm were independent
because the batches were independent. Consider the following argument: write n1 = r − 1
and n2 = r(n − 1), and suppose that for fixed n, p, r,m → ∞ with limp→∞m/p

2/3 < ∞ and
limp→∞ p/r > 0. Then n1 and n2 →∞ and

lim
p→∞

min(p, n1)

n1p + n2
= lim

p→∞

min
(
p
r , 1−

1
r

)
n− 1

r

=
min

(
lim
p→∞

p
r , 1
)

n
> 0.

Then, according to Theorem 1, we would find that

Z =

max
1≤k≤m

logit
(
θk
)
− µp,r−1,r(n−1) − bmσp,r−1,r(n−1)

amσp,r−1,r(n−1)

D−−−→
p→∞

Gumbel(0, 1),

where am, bm are defined as Equation (3.1). Hence, an approximate α-test for testing H0 could
be given by rejecting when Z > F−1Gumbel(0,1)(1−α). As an aside, in some situations it could be

convenient to work with the following reparametrization outlined in Mardia et al. (1979):

θk,1

(
p, r(n− 1), r − 1

) D
= θk,1

(
r − 1, r(n− 1) + r − 1− p, p

)
D
= θk,1

(
r − 1, rn− 1− p, p

)
.

It can be easily shown that the asymptotic regime and hence the simulation results are invariant
under the above reparametrization.

Now in order to generate the power curves for our hypothesis testing framework, we tested
against the one-parameter family of alternatives
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H1(γ):
(µ11, ..., µ1r) = (

1γ

. . .
1γ

 ,
2γ

. . .
2γ

 , ...,
rγ. . .
rγ

)

· · ·

(µm1, ..., µmr) = (

1γ

. . .
1γ

 ,
2γ

. . .
2γ

 , ...,
rγ. . .
rγ

).

for γ ∈ [0, 1]. We performed 8000 simulation runs for each p, r, γ combination. This was done
p ranging from p = 10 to p = 100, and for each such choice of p we set r = 2p. We then
computed approximations to the true power curves based on these simulations. The results for
p = 10, 30, 70, 100 are plotted on Figure 3.
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Figure 3 – Power curves for simultaneous MANOVA tests

Note that when γ = 0, the alternate hypothesis and the null hypothesis coincided. Just like
in the first simulation setting, the results are good even for small to moderate values of p and
for very mild departures from the null hypothesis, as evidenced by small positive values of γ
yielding power close to 1. Further, as expected, the power curves even steeper as the problem
dimension increases from p = 10 to p = 100. This is in agreement with our theoretical findings.

5. Discussion

The greatest root statistic arises as the test statistic in several multivariate statistical anal-
ysis settings. We explored the problem of several independent multivariate analysis testing
problems when each hypothesis instance is the greatest root statistic. It is not difficult to
fathom casting batch MANOVA or batch pairwise testing for equality of covariance matrices in
our hypothesis testing framework. In this article we prove that the maximal domain of attrac-
tion of an i.i.d. sequence of greatest root statistics arising out of such batch testing settings is
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the Gumbel distribution. We present the efficacy of the asymptotic results through two canon-
ical multivariate analysis techniques.

The results in this article are quite general and can, in principle, be applied to any situation
where several independent instances of the greatest root statistics are employed as the test
statistic. In particular, one can recast the underlying model in this article as array data where
the m dimension represents the various faces of the arrays. Array variate random variables are
mainly useful for multiply labeled random variables that can naturally be arranged in array
form. Some examples include response from multi-factor experiments, two-three dimensional
image and video data, spatial-temporal data, repeated measures data. The methods of this
article can be used to test homogeneity across the faces of the array.
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